summit/frontend/node_modules/three-stdlib/loaders/FBXLoader.js

2458 lines
89 KiB
JavaScript

import { Loader, LoaderUtils, FileLoader, TextureLoader, RepeatWrapping, ClampToEdgeWrapping, Texture, MeshPhongMaterial, MeshLambertMaterial, Color, EquirectangularReflectionMapping, Matrix4, Group, Bone, PropertyBinding, Object3D, OrthographicCamera, PerspectiveCamera, PointLight, MathUtils, SpotLight, DirectionalLight, SkinnedMesh, Mesh, LineBasicMaterial, Line, Vector3, Skeleton, AmbientLight, BufferGeometry, Float32BufferAttribute, Uint16BufferAttribute, Matrix3, Vector4, AnimationClip, Quaternion, Euler, VectorKeyframeTrack, QuaternionKeyframeTrack, NumberKeyframeTrack } from "three";
import { unzlibSync } from "fflate";
import { NURBSCurve } from "../curves/NURBSCurve.js";
import { decodeText } from "../_polyfill/LoaderUtils.js";
import { UV1 } from "../_polyfill/uv1.js";
let fbxTree;
let connections;
let sceneGraph;
class FBXLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const path = scope.path === "" ? LoaderUtils.extractUrlBase(url) : scope.path;
const loader = new FileLoader(this.manager);
loader.setPath(scope.path);
loader.setResponseType("arraybuffer");
loader.setRequestHeader(scope.requestHeader);
loader.setWithCredentials(scope.withCredentials);
loader.load(
url,
function(buffer) {
try {
onLoad(scope.parse(buffer, path));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
},
onProgress,
onError
);
}
parse(FBXBuffer, path) {
if (isFbxFormatBinary(FBXBuffer)) {
fbxTree = new BinaryParser().parse(FBXBuffer);
} else {
const FBXText = convertArrayBufferToString(FBXBuffer);
if (!isFbxFormatASCII(FBXText)) {
throw new Error("THREE.FBXLoader: Unknown format.");
}
if (getFbxVersion(FBXText) < 7e3) {
throw new Error("THREE.FBXLoader: FBX version not supported, FileVersion: " + getFbxVersion(FBXText));
}
fbxTree = new TextParser().parse(FBXText);
}
const textureLoader = new TextureLoader(this.manager).setPath(this.resourcePath || path).setCrossOrigin(this.crossOrigin);
return new FBXTreeParser(textureLoader, this.manager).parse(fbxTree);
}
}
class FBXTreeParser {
constructor(textureLoader, manager) {
this.textureLoader = textureLoader;
this.manager = manager;
}
parse() {
connections = this.parseConnections();
const images = this.parseImages();
const textures = this.parseTextures(images);
const materials = this.parseMaterials(textures);
const deformers = this.parseDeformers();
const geometryMap = new GeometryParser().parse(deformers);
this.parseScene(deformers, geometryMap, materials);
return sceneGraph;
}
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
parseConnections() {
const connectionMap = /* @__PURE__ */ new Map();
if ("Connections" in fbxTree) {
const rawConnections = fbxTree.Connections.connections;
rawConnections.forEach(function(rawConnection) {
const fromID = rawConnection[0];
const toID = rawConnection[1];
const relationship = rawConnection[2];
if (!connectionMap.has(fromID)) {
connectionMap.set(fromID, {
parents: [],
children: []
});
}
const parentRelationship = { ID: toID, relationship };
connectionMap.get(fromID).parents.push(parentRelationship);
if (!connectionMap.has(toID)) {
connectionMap.set(toID, {
parents: [],
children: []
});
}
const childRelationship = { ID: fromID, relationship };
connectionMap.get(toID).children.push(childRelationship);
});
}
return connectionMap;
}
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
parseImages() {
const images = {};
const blobs = {};
if ("Video" in fbxTree.Objects) {
const videoNodes = fbxTree.Objects.Video;
for (const nodeID in videoNodes) {
const videoNode = videoNodes[nodeID];
const id = parseInt(nodeID);
images[id] = videoNode.RelativeFilename || videoNode.Filename;
if ("Content" in videoNode) {
const arrayBufferContent = videoNode.Content instanceof ArrayBuffer && videoNode.Content.byteLength > 0;
const base64Content = typeof videoNode.Content === "string" && videoNode.Content !== "";
if (arrayBufferContent || base64Content) {
const image = this.parseImage(videoNodes[nodeID]);
blobs[videoNode.RelativeFilename || videoNode.Filename] = image;
}
}
}
}
for (const id in images) {
const filename = images[id];
if (blobs[filename] !== void 0)
images[id] = blobs[filename];
else
images[id] = images[id].split("\\").pop();
}
return images;
}
// Parse embedded image data in FBXTree.Video.Content
parseImage(videoNode) {
const content = videoNode.Content;
const fileName = videoNode.RelativeFilename || videoNode.Filename;
const extension = fileName.slice(fileName.lastIndexOf(".") + 1).toLowerCase();
let type;
switch (extension) {
case "bmp":
type = "image/bmp";
break;
case "jpg":
case "jpeg":
type = "image/jpeg";
break;
case "png":
type = "image/png";
break;
case "tif":
type = "image/tiff";
break;
case "tga":
if (this.manager.getHandler(".tga") === null) {
console.warn("FBXLoader: TGA loader not found, skipping ", fileName);
}
type = "image/tga";
break;
default:
console.warn('FBXLoader: Image type "' + extension + '" is not supported.');
return;
}
if (typeof content === "string") {
return "data:" + type + ";base64," + content;
} else {
const array = new Uint8Array(content);
return window.URL.createObjectURL(new Blob([array], { type }));
}
}
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
parseTextures(images) {
const textureMap = /* @__PURE__ */ new Map();
if ("Texture" in fbxTree.Objects) {
const textureNodes = fbxTree.Objects.Texture;
for (const nodeID in textureNodes) {
const texture = this.parseTexture(textureNodes[nodeID], images);
textureMap.set(parseInt(nodeID), texture);
}
}
return textureMap;
}
// Parse individual node in FBXTree.Objects.Texture
parseTexture(textureNode, images) {
const texture = this.loadTexture(textureNode, images);
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
const wrapModeU = textureNode.WrapModeU;
const wrapModeV = textureNode.WrapModeV;
const valueU = wrapModeU !== void 0 ? wrapModeU.value : 0;
const valueV = wrapModeV !== void 0 ? wrapModeV.value : 0;
texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
if ("Scaling" in textureNode) {
const values = textureNode.Scaling.value;
texture.repeat.x = values[0];
texture.repeat.y = values[1];
}
return texture;
}
// load a texture specified as a blob or data URI, or via an external URL using TextureLoader
loadTexture(textureNode, images) {
let fileName;
const currentPath = this.textureLoader.path;
const children = connections.get(textureNode.id).children;
if (children !== void 0 && children.length > 0 && images[children[0].ID] !== void 0) {
fileName = images[children[0].ID];
if (fileName.indexOf("blob:") === 0 || fileName.indexOf("data:") === 0) {
this.textureLoader.setPath(void 0);
}
}
let texture;
const extension = textureNode.FileName.slice(-3).toLowerCase();
if (extension === "tga") {
const loader = this.manager.getHandler(".tga");
if (loader === null) {
console.warn("FBXLoader: TGA loader not found, creating placeholder texture for", textureNode.RelativeFilename);
texture = new Texture();
} else {
loader.setPath(this.textureLoader.path);
texture = loader.load(fileName);
}
} else if (extension === "psd") {
console.warn(
"FBXLoader: PSD textures are not supported, creating placeholder texture for",
textureNode.RelativeFilename
);
texture = new Texture();
} else {
texture = this.textureLoader.load(fileName);
}
this.textureLoader.setPath(currentPath);
return texture;
}
// Parse nodes in FBXTree.Objects.Material
parseMaterials(textureMap) {
const materialMap = /* @__PURE__ */ new Map();
if ("Material" in fbxTree.Objects) {
const materialNodes = fbxTree.Objects.Material;
for (const nodeID in materialNodes) {
const material = this.parseMaterial(materialNodes[nodeID], textureMap);
if (material !== null)
materialMap.set(parseInt(nodeID), material);
}
}
return materialMap;
}
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
parseMaterial(materialNode, textureMap) {
const ID = materialNode.id;
const name = materialNode.attrName;
let type = materialNode.ShadingModel;
if (typeof type === "object") {
type = type.value;
}
if (!connections.has(ID))
return null;
const parameters = this.parseParameters(materialNode, textureMap, ID);
let material;
switch (type.toLowerCase()) {
case "phong":
material = new MeshPhongMaterial();
break;
case "lambert":
material = new MeshLambertMaterial();
break;
default:
console.warn('THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type);
material = new MeshPhongMaterial();
break;
}
material.setValues(parameters);
material.name = name;
return material;
}
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
parseParameters(materialNode, textureMap, ID) {
const parameters = {};
if (materialNode.BumpFactor) {
parameters.bumpScale = materialNode.BumpFactor.value;
}
if (materialNode.Diffuse) {
parameters.color = new Color().fromArray(materialNode.Diffuse.value);
} else if (materialNode.DiffuseColor && (materialNode.DiffuseColor.type === "Color" || materialNode.DiffuseColor.type === "ColorRGB")) {
parameters.color = new Color().fromArray(materialNode.DiffuseColor.value);
}
if (materialNode.DisplacementFactor) {
parameters.displacementScale = materialNode.DisplacementFactor.value;
}
if (materialNode.Emissive) {
parameters.emissive = new Color().fromArray(materialNode.Emissive.value);
} else if (materialNode.EmissiveColor && (materialNode.EmissiveColor.type === "Color" || materialNode.EmissiveColor.type === "ColorRGB")) {
parameters.emissive = new Color().fromArray(materialNode.EmissiveColor.value);
}
if (materialNode.EmissiveFactor) {
parameters.emissiveIntensity = parseFloat(materialNode.EmissiveFactor.value);
}
if (materialNode.Opacity) {
parameters.opacity = parseFloat(materialNode.Opacity.value);
}
if (parameters.opacity < 1) {
parameters.transparent = true;
}
if (materialNode.ReflectionFactor) {
parameters.reflectivity = materialNode.ReflectionFactor.value;
}
if (materialNode.Shininess) {
parameters.shininess = materialNode.Shininess.value;
}
if (materialNode.Specular) {
parameters.specular = new Color().fromArray(materialNode.Specular.value);
} else if (materialNode.SpecularColor && materialNode.SpecularColor.type === "Color") {
parameters.specular = new Color().fromArray(materialNode.SpecularColor.value);
}
const scope = this;
connections.get(ID).children.forEach(function(child) {
const type = child.relationship;
switch (type) {
case "Bump":
parameters.bumpMap = scope.getTexture(textureMap, child.ID);
break;
case "Maya|TEX_ao_map":
parameters.aoMap = scope.getTexture(textureMap, child.ID);
break;
case "DiffuseColor":
case "Maya|TEX_color_map":
parameters.map = scope.getTexture(textureMap, child.ID);
if (parameters.map !== void 0) {
if ("colorSpace" in parameters.map)
parameters.map.colorSpace = "srgb";
else
parameters.map.encoding = 3001;
}
break;
case "DisplacementColor":
parameters.displacementMap = scope.getTexture(textureMap, child.ID);
break;
case "EmissiveColor":
parameters.emissiveMap = scope.getTexture(textureMap, child.ID);
if (parameters.emissiveMap !== void 0) {
if ("colorSpace" in parameters.emissiveMap)
parameters.emissiveMap.colorSpace = "srgb";
else
parameters.emissiveMap.encoding = 3001;
}
break;
case "NormalMap":
case "Maya|TEX_normal_map":
parameters.normalMap = scope.getTexture(textureMap, child.ID);
break;
case "ReflectionColor":
parameters.envMap = scope.getTexture(textureMap, child.ID);
if (parameters.envMap !== void 0) {
parameters.envMap.mapping = EquirectangularReflectionMapping;
if ("colorSpace" in parameters.envMap)
parameters.envMap.colorSpace = "srgb";
else
parameters.envMap.encoding = 3001;
}
break;
case "SpecularColor":
parameters.specularMap = scope.getTexture(textureMap, child.ID);
if (parameters.specularMap !== void 0) {
if ("colorSpace" in parameters.specularMap)
parameters.specularMap.colorSpace = "srgb";
else
parameters.specularMap.encoding = 3001;
}
break;
case "TransparentColor":
case "TransparencyFactor":
parameters.alphaMap = scope.getTexture(textureMap, child.ID);
parameters.transparent = true;
break;
case "AmbientColor":
case "ShininessExponent":
case "SpecularFactor":
case "VectorDisplacementColor":
default:
console.warn("THREE.FBXLoader: %s map is not supported in three.js, skipping texture.", type);
break;
}
});
return parameters;
}
// get a texture from the textureMap for use by a material.
getTexture(textureMap, id) {
if ("LayeredTexture" in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture) {
console.warn("THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.");
id = connections.get(id).children[0].ID;
}
return textureMap.get(id);
}
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
parseDeformers() {
const skeletons = {};
const morphTargets = {};
if ("Deformer" in fbxTree.Objects) {
const DeformerNodes = fbxTree.Objects.Deformer;
for (const nodeID in DeformerNodes) {
const deformerNode = DeformerNodes[nodeID];
const relationships = connections.get(parseInt(nodeID));
if (deformerNode.attrType === "Skin") {
const skeleton = this.parseSkeleton(relationships, DeformerNodes);
skeleton.ID = nodeID;
if (relationships.parents.length > 1) {
console.warn("THREE.FBXLoader: skeleton attached to more than one geometry is not supported.");
}
skeleton.geometryID = relationships.parents[0].ID;
skeletons[nodeID] = skeleton;
} else if (deformerNode.attrType === "BlendShape") {
const morphTarget = {
id: nodeID
};
morphTarget.rawTargets = this.parseMorphTargets(relationships, DeformerNodes);
morphTarget.id = nodeID;
if (relationships.parents.length > 1) {
console.warn("THREE.FBXLoader: morph target attached to more than one geometry is not supported.");
}
morphTargets[nodeID] = morphTarget;
}
}
}
return {
skeletons,
morphTargets
};
}
// Parse single nodes in FBXTree.Objects.Deformer
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
parseSkeleton(relationships, deformerNodes) {
const rawBones = [];
relationships.children.forEach(function(child) {
const boneNode = deformerNodes[child.ID];
if (boneNode.attrType !== "Cluster")
return;
const rawBone = {
ID: child.ID,
indices: [],
weights: [],
transformLink: new Matrix4().fromArray(boneNode.TransformLink.a)
// transform: new Matrix4().fromArray( boneNode.Transform.a ),
// linkMode: boneNode.Mode,
};
if ("Indexes" in boneNode) {
rawBone.indices = boneNode.Indexes.a;
rawBone.weights = boneNode.Weights.a;
}
rawBones.push(rawBone);
});
return {
rawBones,
bones: []
};
}
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
parseMorphTargets(relationships, deformerNodes) {
const rawMorphTargets = [];
for (let i = 0; i < relationships.children.length; i++) {
const child = relationships.children[i];
const morphTargetNode = deformerNodes[child.ID];
const rawMorphTarget = {
name: morphTargetNode.attrName,
initialWeight: morphTargetNode.DeformPercent,
id: morphTargetNode.id,
fullWeights: morphTargetNode.FullWeights.a
};
if (morphTargetNode.attrType !== "BlendShapeChannel")
return;
rawMorphTarget.geoID = connections.get(parseInt(child.ID)).children.filter(function(child2) {
return child2.relationship === void 0;
})[0].ID;
rawMorphTargets.push(rawMorphTarget);
}
return rawMorphTargets;
}
// create the main Group() to be returned by the loader
parseScene(deformers, geometryMap, materialMap) {
sceneGraph = new Group();
const modelMap = this.parseModels(deformers.skeletons, geometryMap, materialMap);
const modelNodes = fbxTree.Objects.Model;
const scope = this;
modelMap.forEach(function(model) {
const modelNode = modelNodes[model.ID];
scope.setLookAtProperties(model, modelNode);
const parentConnections = connections.get(model.ID).parents;
parentConnections.forEach(function(connection) {
const parent = modelMap.get(connection.ID);
if (parent !== void 0)
parent.add(model);
});
if (model.parent === null) {
sceneGraph.add(model);
}
});
this.bindSkeleton(deformers.skeletons, geometryMap, modelMap);
this.createAmbientLight();
sceneGraph.traverse(function(node) {
if (node.userData.transformData) {
if (node.parent) {
node.userData.transformData.parentMatrix = node.parent.matrix;
node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld;
}
const transform = generateTransform(node.userData.transformData);
node.applyMatrix4(transform);
node.updateWorldMatrix();
}
});
const animations = new AnimationParser().parse();
if (sceneGraph.children.length === 1 && sceneGraph.children[0].isGroup) {
sceneGraph.children[0].animations = animations;
sceneGraph = sceneGraph.children[0];
}
sceneGraph.animations = animations;
}
// parse nodes in FBXTree.Objects.Model
parseModels(skeletons, geometryMap, materialMap) {
const modelMap = /* @__PURE__ */ new Map();
const modelNodes = fbxTree.Objects.Model;
for (const nodeID in modelNodes) {
const id = parseInt(nodeID);
const node = modelNodes[nodeID];
const relationships = connections.get(id);
let model = this.buildSkeleton(relationships, skeletons, id, node.attrName);
if (!model) {
switch (node.attrType) {
case "Camera":
model = this.createCamera(relationships);
break;
case "Light":
model = this.createLight(relationships);
break;
case "Mesh":
model = this.createMesh(relationships, geometryMap, materialMap);
break;
case "NurbsCurve":
model = this.createCurve(relationships, geometryMap);
break;
case "LimbNode":
case "Root":
model = new Bone();
break;
case "Null":
default:
model = new Group();
break;
}
model.name = node.attrName ? PropertyBinding.sanitizeNodeName(node.attrName) : "";
model.ID = id;
}
this.getTransformData(model, node);
modelMap.set(id, model);
}
return modelMap;
}
buildSkeleton(relationships, skeletons, id, name) {
let bone = null;
relationships.parents.forEach(function(parent) {
for (const ID in skeletons) {
const skeleton = skeletons[ID];
skeleton.rawBones.forEach(function(rawBone, i) {
if (rawBone.ID === parent.ID) {
const subBone = bone;
bone = new Bone();
bone.matrixWorld.copy(rawBone.transformLink);
bone.name = name ? PropertyBinding.sanitizeNodeName(name) : "";
bone.ID = id;
skeleton.bones[i] = bone;
if (subBone !== null) {
bone.add(subBone);
}
}
});
}
});
return bone;
}
// create a PerspectiveCamera or OrthographicCamera
createCamera(relationships) {
let model;
let cameraAttribute;
relationships.children.forEach(function(child) {
const attr = fbxTree.Objects.NodeAttribute[child.ID];
if (attr !== void 0) {
cameraAttribute = attr;
}
});
if (cameraAttribute === void 0) {
model = new Object3D();
} else {
let type = 0;
if (cameraAttribute.CameraProjectionType !== void 0 && cameraAttribute.CameraProjectionType.value === 1) {
type = 1;
}
let nearClippingPlane = 1;
if (cameraAttribute.NearPlane !== void 0) {
nearClippingPlane = cameraAttribute.NearPlane.value / 1e3;
}
let farClippingPlane = 1e3;
if (cameraAttribute.FarPlane !== void 0) {
farClippingPlane = cameraAttribute.FarPlane.value / 1e3;
}
let width = window.innerWidth;
let height = window.innerHeight;
if (cameraAttribute.AspectWidth !== void 0 && cameraAttribute.AspectHeight !== void 0) {
width = cameraAttribute.AspectWidth.value;
height = cameraAttribute.AspectHeight.value;
}
const aspect = width / height;
let fov = 45;
if (cameraAttribute.FieldOfView !== void 0) {
fov = cameraAttribute.FieldOfView.value;
}
const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
switch (type) {
case 0:
model = new PerspectiveCamera(fov, aspect, nearClippingPlane, farClippingPlane);
if (focalLength !== null)
model.setFocalLength(focalLength);
break;
case 1:
model = new OrthographicCamera(
-width / 2,
width / 2,
height / 2,
-height / 2,
nearClippingPlane,
farClippingPlane
);
break;
default:
console.warn("THREE.FBXLoader: Unknown camera type " + type + ".");
model = new Object3D();
break;
}
}
return model;
}
// Create a DirectionalLight, PointLight or SpotLight
createLight(relationships) {
let model;
let lightAttribute;
relationships.children.forEach(function(child) {
const attr = fbxTree.Objects.NodeAttribute[child.ID];
if (attr !== void 0) {
lightAttribute = attr;
}
});
if (lightAttribute === void 0) {
model = new Object3D();
} else {
let type;
if (lightAttribute.LightType === void 0) {
type = 0;
} else {
type = lightAttribute.LightType.value;
}
let color = 16777215;
if (lightAttribute.Color !== void 0) {
color = new Color().fromArray(lightAttribute.Color.value);
}
let intensity = lightAttribute.Intensity === void 0 ? 1 : lightAttribute.Intensity.value / 100;
if (lightAttribute.CastLightOnObject !== void 0 && lightAttribute.CastLightOnObject.value === 0) {
intensity = 0;
}
let distance = 0;
if (lightAttribute.FarAttenuationEnd !== void 0) {
if (lightAttribute.EnableFarAttenuation !== void 0 && lightAttribute.EnableFarAttenuation.value === 0) {
distance = 0;
} else {
distance = lightAttribute.FarAttenuationEnd.value;
}
}
const decay = 1;
switch (type) {
case 0:
model = new PointLight(color, intensity, distance, decay);
break;
case 1:
model = new DirectionalLight(color, intensity);
break;
case 2:
let angle = Math.PI / 3;
if (lightAttribute.InnerAngle !== void 0) {
angle = MathUtils.degToRad(lightAttribute.InnerAngle.value);
}
let penumbra = 0;
if (lightAttribute.OuterAngle !== void 0) {
penumbra = MathUtils.degToRad(lightAttribute.OuterAngle.value);
penumbra = Math.max(penumbra, 1);
}
model = new SpotLight(color, intensity, distance, angle, penumbra, decay);
break;
default:
console.warn(
"THREE.FBXLoader: Unknown light type " + lightAttribute.LightType.value + ", defaulting to a PointLight."
);
model = new PointLight(color, intensity);
break;
}
if (lightAttribute.CastShadows !== void 0 && lightAttribute.CastShadows.value === 1) {
model.castShadow = true;
}
}
return model;
}
createMesh(relationships, geometryMap, materialMap) {
let model;
let geometry = null;
let material = null;
const materials = [];
relationships.children.forEach(function(child) {
if (geometryMap.has(child.ID)) {
geometry = geometryMap.get(child.ID);
}
if (materialMap.has(child.ID)) {
materials.push(materialMap.get(child.ID));
}
});
if (materials.length > 1) {
material = materials;
} else if (materials.length > 0) {
material = materials[0];
} else {
material = new MeshPhongMaterial({ color: 13421772 });
materials.push(material);
}
if ("color" in geometry.attributes) {
materials.forEach(function(material2) {
material2.vertexColors = true;
});
}
if (geometry.FBX_Deformer) {
model = new SkinnedMesh(geometry, material);
model.normalizeSkinWeights();
} else {
model = new Mesh(geometry, material);
}
return model;
}
createCurve(relationships, geometryMap) {
const geometry = relationships.children.reduce(function(geo, child) {
if (geometryMap.has(child.ID))
geo = geometryMap.get(child.ID);
return geo;
}, null);
const material = new LineBasicMaterial({ color: 3342591, linewidth: 1 });
return new Line(geometry, material);
}
// parse the model node for transform data
getTransformData(model, modelNode) {
const transformData = {};
if ("InheritType" in modelNode)
transformData.inheritType = parseInt(modelNode.InheritType.value);
if ("RotationOrder" in modelNode)
transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value);
else
transformData.eulerOrder = "ZYX";
if ("Lcl_Translation" in modelNode)
transformData.translation = modelNode.Lcl_Translation.value;
if ("PreRotation" in modelNode)
transformData.preRotation = modelNode.PreRotation.value;
if ("Lcl_Rotation" in modelNode)
transformData.rotation = modelNode.Lcl_Rotation.value;
if ("PostRotation" in modelNode)
transformData.postRotation = modelNode.PostRotation.value;
if ("Lcl_Scaling" in modelNode)
transformData.scale = modelNode.Lcl_Scaling.value;
if ("ScalingOffset" in modelNode)
transformData.scalingOffset = modelNode.ScalingOffset.value;
if ("ScalingPivot" in modelNode)
transformData.scalingPivot = modelNode.ScalingPivot.value;
if ("RotationOffset" in modelNode)
transformData.rotationOffset = modelNode.RotationOffset.value;
if ("RotationPivot" in modelNode)
transformData.rotationPivot = modelNode.RotationPivot.value;
model.userData.transformData = transformData;
}
setLookAtProperties(model, modelNode) {
if ("LookAtProperty" in modelNode) {
const children = connections.get(model.ID).children;
children.forEach(function(child) {
if (child.relationship === "LookAtProperty") {
const lookAtTarget = fbxTree.Objects.Model[child.ID];
if ("Lcl_Translation" in lookAtTarget) {
const pos = lookAtTarget.Lcl_Translation.value;
if (model.target !== void 0) {
model.target.position.fromArray(pos);
sceneGraph.add(model.target);
} else {
model.lookAt(new Vector3().fromArray(pos));
}
}
}
});
}
}
bindSkeleton(skeletons, geometryMap, modelMap) {
const bindMatrices = this.parsePoseNodes();
for (const ID in skeletons) {
const skeleton = skeletons[ID];
const parents = connections.get(parseInt(skeleton.ID)).parents;
parents.forEach(function(parent) {
if (geometryMap.has(parent.ID)) {
const geoID = parent.ID;
const geoRelationships = connections.get(geoID);
geoRelationships.parents.forEach(function(geoConnParent) {
if (modelMap.has(geoConnParent.ID)) {
const model = modelMap.get(geoConnParent.ID);
model.bind(new Skeleton(skeleton.bones), bindMatrices[geoConnParent.ID]);
}
});
}
});
}
}
parsePoseNodes() {
const bindMatrices = {};
if ("Pose" in fbxTree.Objects) {
const BindPoseNode = fbxTree.Objects.Pose;
for (const nodeID in BindPoseNode) {
if (BindPoseNode[nodeID].attrType === "BindPose" && BindPoseNode[nodeID].NbPoseNodes > 0) {
const poseNodes = BindPoseNode[nodeID].PoseNode;
if (Array.isArray(poseNodes)) {
poseNodes.forEach(function(poseNode) {
bindMatrices[poseNode.Node] = new Matrix4().fromArray(poseNode.Matrix.a);
});
} else {
bindMatrices[poseNodes.Node] = new Matrix4().fromArray(poseNodes.Matrix.a);
}
}
}
}
return bindMatrices;
}
// Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light
createAmbientLight() {
if ("GlobalSettings" in fbxTree && "AmbientColor" in fbxTree.GlobalSettings) {
const ambientColor = fbxTree.GlobalSettings.AmbientColor.value;
const r = ambientColor[0];
const g = ambientColor[1];
const b = ambientColor[2];
if (r !== 0 || g !== 0 || b !== 0) {
const color = new Color(r, g, b);
sceneGraph.add(new AmbientLight(color, 1));
}
}
}
}
class GeometryParser {
// Parse nodes in FBXTree.Objects.Geometry
parse(deformers) {
const geometryMap = /* @__PURE__ */ new Map();
if ("Geometry" in fbxTree.Objects) {
const geoNodes = fbxTree.Objects.Geometry;
for (const nodeID in geoNodes) {
const relationships = connections.get(parseInt(nodeID));
const geo = this.parseGeometry(relationships, geoNodes[nodeID], deformers);
geometryMap.set(parseInt(nodeID), geo);
}
}
return geometryMap;
}
// Parse single node in FBXTree.Objects.Geometry
parseGeometry(relationships, geoNode, deformers) {
switch (geoNode.attrType) {
case "Mesh":
return this.parseMeshGeometry(relationships, geoNode, deformers);
case "NurbsCurve":
return this.parseNurbsGeometry(geoNode);
}
}
// Parse single node mesh geometry in FBXTree.Objects.Geometry
parseMeshGeometry(relationships, geoNode, deformers) {
const skeletons = deformers.skeletons;
const morphTargets = [];
const modelNodes = relationships.parents.map(function(parent) {
return fbxTree.Objects.Model[parent.ID];
});
if (modelNodes.length === 0)
return;
const skeleton = relationships.children.reduce(function(skeleton2, child) {
if (skeletons[child.ID] !== void 0)
skeleton2 = skeletons[child.ID];
return skeleton2;
}, null);
relationships.children.forEach(function(child) {
if (deformers.morphTargets[child.ID] !== void 0) {
morphTargets.push(deformers.morphTargets[child.ID]);
}
});
const modelNode = modelNodes[0];
const transformData = {};
if ("RotationOrder" in modelNode)
transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value);
if ("InheritType" in modelNode)
transformData.inheritType = parseInt(modelNode.InheritType.value);
if ("GeometricTranslation" in modelNode)
transformData.translation = modelNode.GeometricTranslation.value;
if ("GeometricRotation" in modelNode)
transformData.rotation = modelNode.GeometricRotation.value;
if ("GeometricScaling" in modelNode)
transformData.scale = modelNode.GeometricScaling.value;
const transform = generateTransform(transformData);
return this.genGeometry(geoNode, skeleton, morphTargets, transform);
}
// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry
genGeometry(geoNode, skeleton, morphTargets, preTransform) {
const geo = new BufferGeometry();
if (geoNode.attrName)
geo.name = geoNode.attrName;
const geoInfo = this.parseGeoNode(geoNode, skeleton);
const buffers = this.genBuffers(geoInfo);
const positionAttribute = new Float32BufferAttribute(buffers.vertex, 3);
positionAttribute.applyMatrix4(preTransform);
geo.setAttribute("position", positionAttribute);
if (buffers.colors.length > 0) {
geo.setAttribute("color", new Float32BufferAttribute(buffers.colors, 3));
}
if (skeleton) {
geo.setAttribute("skinIndex", new Uint16BufferAttribute(buffers.weightsIndices, 4));
geo.setAttribute("skinWeight", new Float32BufferAttribute(buffers.vertexWeights, 4));
geo.FBX_Deformer = skeleton;
}
if (buffers.normal.length > 0) {
const normalMatrix = new Matrix3().getNormalMatrix(preTransform);
const normalAttribute = new Float32BufferAttribute(buffers.normal, 3);
normalAttribute.applyNormalMatrix(normalMatrix);
geo.setAttribute("normal", normalAttribute);
}
buffers.uvs.forEach(function(uvBuffer, i) {
if (UV1 === "uv2")
i++;
const name = i === 0 ? "uv" : `uv${i}`;
geo.setAttribute(name, new Float32BufferAttribute(buffers.uvs[i], 2));
});
if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") {
let prevMaterialIndex = buffers.materialIndex[0];
let startIndex = 0;
buffers.materialIndex.forEach(function(currentIndex, i) {
if (currentIndex !== prevMaterialIndex) {
geo.addGroup(startIndex, i - startIndex, prevMaterialIndex);
prevMaterialIndex = currentIndex;
startIndex = i;
}
});
if (geo.groups.length > 0) {
const lastGroup = geo.groups[geo.groups.length - 1];
const lastIndex = lastGroup.start + lastGroup.count;
if (lastIndex !== buffers.materialIndex.length) {
geo.addGroup(lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex);
}
}
if (geo.groups.length === 0) {
geo.addGroup(0, buffers.materialIndex.length, buffers.materialIndex[0]);
}
}
this.addMorphTargets(geo, geoNode, morphTargets, preTransform);
return geo;
}
parseGeoNode(geoNode, skeleton) {
const geoInfo = {};
geoInfo.vertexPositions = geoNode.Vertices !== void 0 ? geoNode.Vertices.a : [];
geoInfo.vertexIndices = geoNode.PolygonVertexIndex !== void 0 ? geoNode.PolygonVertexIndex.a : [];
if (geoNode.LayerElementColor) {
geoInfo.color = this.parseVertexColors(geoNode.LayerElementColor[0]);
}
if (geoNode.LayerElementMaterial) {
geoInfo.material = this.parseMaterialIndices(geoNode.LayerElementMaterial[0]);
}
if (geoNode.LayerElementNormal) {
geoInfo.normal = this.parseNormals(geoNode.LayerElementNormal[0]);
}
if (geoNode.LayerElementUV) {
geoInfo.uv = [];
let i = 0;
while (geoNode.LayerElementUV[i]) {
if (geoNode.LayerElementUV[i].UV) {
geoInfo.uv.push(this.parseUVs(geoNode.LayerElementUV[i]));
}
i++;
}
}
geoInfo.weightTable = {};
if (skeleton !== null) {
geoInfo.skeleton = skeleton;
skeleton.rawBones.forEach(function(rawBone, i) {
rawBone.indices.forEach(function(index, j) {
if (geoInfo.weightTable[index] === void 0)
geoInfo.weightTable[index] = [];
geoInfo.weightTable[index].push({
id: i,
weight: rawBone.weights[j]
});
});
});
}
return geoInfo;
}
genBuffers(geoInfo) {
const buffers = {
vertex: [],
normal: [],
colors: [],
uvs: [],
materialIndex: [],
vertexWeights: [],
weightsIndices: []
};
let polygonIndex = 0;
let faceLength = 0;
let displayedWeightsWarning = false;
let facePositionIndexes = [];
let faceNormals = [];
let faceColors = [];
let faceUVs = [];
let faceWeights = [];
let faceWeightIndices = [];
const scope = this;
geoInfo.vertexIndices.forEach(function(vertexIndex, polygonVertexIndex) {
let materialIndex;
let endOfFace = false;
if (vertexIndex < 0) {
vertexIndex = vertexIndex ^ -1;
endOfFace = true;
}
let weightIndices = [];
let weights = [];
facePositionIndexes.push(vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2);
if (geoInfo.color) {
const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color);
faceColors.push(data[0], data[1], data[2]);
}
if (geoInfo.skeleton) {
if (geoInfo.weightTable[vertexIndex] !== void 0) {
geoInfo.weightTable[vertexIndex].forEach(function(wt) {
weights.push(wt.weight);
weightIndices.push(wt.id);
});
}
if (weights.length > 4) {
if (!displayedWeightsWarning) {
console.warn(
"THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights."
);
displayedWeightsWarning = true;
}
const wIndex = [0, 0, 0, 0];
const Weight = [0, 0, 0, 0];
weights.forEach(function(weight, weightIndex) {
let currentWeight = weight;
let currentIndex = weightIndices[weightIndex];
Weight.forEach(function(comparedWeight, comparedWeightIndex, comparedWeightArray) {
if (currentWeight > comparedWeight) {
comparedWeightArray[comparedWeightIndex] = currentWeight;
currentWeight = comparedWeight;
const tmp = wIndex[comparedWeightIndex];
wIndex[comparedWeightIndex] = currentIndex;
currentIndex = tmp;
}
});
});
weightIndices = wIndex;
weights = Weight;
}
while (weights.length < 4) {
weights.push(0);
weightIndices.push(0);
}
for (let i = 0; i < 4; ++i) {
faceWeights.push(weights[i]);
faceWeightIndices.push(weightIndices[i]);
}
}
if (geoInfo.normal) {
const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal);
faceNormals.push(data[0], data[1], data[2]);
}
if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") {
materialIndex = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material)[0];
}
if (geoInfo.uv) {
geoInfo.uv.forEach(function(uv, i) {
const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, uv);
if (faceUVs[i] === void 0) {
faceUVs[i] = [];
}
faceUVs[i].push(data[0]);
faceUVs[i].push(data[1]);
});
}
faceLength++;
if (endOfFace) {
scope.genFace(
buffers,
geoInfo,
facePositionIndexes,
materialIndex,
faceNormals,
faceColors,
faceUVs,
faceWeights,
faceWeightIndices,
faceLength
);
polygonIndex++;
faceLength = 0;
facePositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
});
return buffers;
}
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
genFace(buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength) {
for (let i = 2; i < faceLength; i++) {
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[0]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[1]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[2]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3 + 1]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3 + 2]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3 + 1]]);
buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3 + 2]]);
if (geoInfo.skeleton) {
buffers.vertexWeights.push(faceWeights[0]);
buffers.vertexWeights.push(faceWeights[1]);
buffers.vertexWeights.push(faceWeights[2]);
buffers.vertexWeights.push(faceWeights[3]);
buffers.vertexWeights.push(faceWeights[(i - 1) * 4]);
buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 1]);
buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 2]);
buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 3]);
buffers.vertexWeights.push(faceWeights[i * 4]);
buffers.vertexWeights.push(faceWeights[i * 4 + 1]);
buffers.vertexWeights.push(faceWeights[i * 4 + 2]);
buffers.vertexWeights.push(faceWeights[i * 4 + 3]);
buffers.weightsIndices.push(faceWeightIndices[0]);
buffers.weightsIndices.push(faceWeightIndices[1]);
buffers.weightsIndices.push(faceWeightIndices[2]);
buffers.weightsIndices.push(faceWeightIndices[3]);
buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4]);
buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 1]);
buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 2]);
buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 3]);
buffers.weightsIndices.push(faceWeightIndices[i * 4]);
buffers.weightsIndices.push(faceWeightIndices[i * 4 + 1]);
buffers.weightsIndices.push(faceWeightIndices[i * 4 + 2]);
buffers.weightsIndices.push(faceWeightIndices[i * 4 + 3]);
}
if (geoInfo.color) {
buffers.colors.push(faceColors[0]);
buffers.colors.push(faceColors[1]);
buffers.colors.push(faceColors[2]);
buffers.colors.push(faceColors[(i - 1) * 3]);
buffers.colors.push(faceColors[(i - 1) * 3 + 1]);
buffers.colors.push(faceColors[(i - 1) * 3 + 2]);
buffers.colors.push(faceColors[i * 3]);
buffers.colors.push(faceColors[i * 3 + 1]);
buffers.colors.push(faceColors[i * 3 + 2]);
}
if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") {
buffers.materialIndex.push(materialIndex);
buffers.materialIndex.push(materialIndex);
buffers.materialIndex.push(materialIndex);
}
if (geoInfo.normal) {
buffers.normal.push(faceNormals[0]);
buffers.normal.push(faceNormals[1]);
buffers.normal.push(faceNormals[2]);
buffers.normal.push(faceNormals[(i - 1) * 3]);
buffers.normal.push(faceNormals[(i - 1) * 3 + 1]);
buffers.normal.push(faceNormals[(i - 1) * 3 + 2]);
buffers.normal.push(faceNormals[i * 3]);
buffers.normal.push(faceNormals[i * 3 + 1]);
buffers.normal.push(faceNormals[i * 3 + 2]);
}
if (geoInfo.uv) {
geoInfo.uv.forEach(function(uv, j) {
if (buffers.uvs[j] === void 0)
buffers.uvs[j] = [];
buffers.uvs[j].push(faceUVs[j][0]);
buffers.uvs[j].push(faceUVs[j][1]);
buffers.uvs[j].push(faceUVs[j][(i - 1) * 2]);
buffers.uvs[j].push(faceUVs[j][(i - 1) * 2 + 1]);
buffers.uvs[j].push(faceUVs[j][i * 2]);
buffers.uvs[j].push(faceUVs[j][i * 2 + 1]);
});
}
}
}
addMorphTargets(parentGeo, parentGeoNode, morphTargets, preTransform) {
if (morphTargets.length === 0)
return;
parentGeo.morphTargetsRelative = true;
parentGeo.morphAttributes.position = [];
const scope = this;
morphTargets.forEach(function(morphTarget) {
morphTarget.rawTargets.forEach(function(rawTarget) {
const morphGeoNode = fbxTree.Objects.Geometry[rawTarget.geoID];
if (morphGeoNode !== void 0) {
scope.genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name);
}
});
});
}
// a morph geometry node is similar to a standard node, and the node is also contained
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
// and a special attribute Index defining which vertices of the original geometry are affected
// Normal and position attributes only have data for the vertices that are affected by the morph
genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, name) {
const vertexIndices = parentGeoNode.PolygonVertexIndex !== void 0 ? parentGeoNode.PolygonVertexIndex.a : [];
const morphPositionsSparse = morphGeoNode.Vertices !== void 0 ? morphGeoNode.Vertices.a : [];
const indices = morphGeoNode.Indexes !== void 0 ? morphGeoNode.Indexes.a : [];
const length = parentGeo.attributes.position.count * 3;
const morphPositions = new Float32Array(length);
for (let i = 0; i < indices.length; i++) {
const morphIndex = indices[i] * 3;
morphPositions[morphIndex] = morphPositionsSparse[i * 3];
morphPositions[morphIndex + 1] = morphPositionsSparse[i * 3 + 1];
morphPositions[morphIndex + 2] = morphPositionsSparse[i * 3 + 2];
}
const morphGeoInfo = {
vertexIndices,
vertexPositions: morphPositions
};
const morphBuffers = this.genBuffers(morphGeoInfo);
const positionAttribute = new Float32BufferAttribute(morphBuffers.vertex, 3);
positionAttribute.name = name || morphGeoNode.attrName;
positionAttribute.applyMatrix4(preTransform);
parentGeo.morphAttributes.position.push(positionAttribute);
}
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
parseNormals(NormalNode) {
const mappingType = NormalNode.MappingInformationType;
const referenceType = NormalNode.ReferenceInformationType;
const buffer = NormalNode.Normals.a;
let indexBuffer = [];
if (referenceType === "IndexToDirect") {
if ("NormalIndex" in NormalNode) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ("NormalsIndex" in NormalNode) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer,
indices: indexBuffer,
mappingType,
referenceType
};
}
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
parseUVs(UVNode) {
const mappingType = UVNode.MappingInformationType;
const referenceType = UVNode.ReferenceInformationType;
const buffer = UVNode.UV.a;
let indexBuffer = [];
if (referenceType === "IndexToDirect") {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer,
indices: indexBuffer,
mappingType,
referenceType
};
}
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
parseVertexColors(ColorNode) {
const mappingType = ColorNode.MappingInformationType;
const referenceType = ColorNode.ReferenceInformationType;
const buffer = ColorNode.Colors.a;
let indexBuffer = [];
if (referenceType === "IndexToDirect") {
indexBuffer = ColorNode.ColorIndex.a;
}
return {
dataSize: 4,
buffer,
indices: indexBuffer,
mappingType,
referenceType
};
}
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
parseMaterialIndices(MaterialNode) {
const mappingType = MaterialNode.MappingInformationType;
const referenceType = MaterialNode.ReferenceInformationType;
if (mappingType === "NoMappingInformation") {
return {
dataSize: 1,
buffer: [0],
indices: [0],
mappingType: "AllSame",
referenceType
};
}
const materialIndexBuffer = MaterialNode.Materials.a;
const materialIndices = [];
for (let i = 0; i < materialIndexBuffer.length; ++i) {
materialIndices.push(i);
}
return {
dataSize: 1,
buffer: materialIndexBuffer,
indices: materialIndices,
mappingType,
referenceType
};
}
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
parseNurbsGeometry(geoNode) {
if (NURBSCurve === void 0) {
console.error(
"THREE.FBXLoader: The loader relies on NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry."
);
return new BufferGeometry();
}
const order = parseInt(geoNode.Order);
if (isNaN(order)) {
console.error("THREE.FBXLoader: Invalid Order %s given for geometry ID: %s", geoNode.Order, geoNode.id);
return new BufferGeometry();
}
const degree = order - 1;
const knots = geoNode.KnotVector.a;
const controlPoints = [];
const pointsValues = geoNode.Points.a;
for (let i = 0, l = pointsValues.length; i < l; i += 4) {
controlPoints.push(new Vector4().fromArray(pointsValues, i));
}
let startKnot, endKnot;
if (geoNode.Form === "Closed") {
controlPoints.push(controlPoints[0]);
} else if (geoNode.Form === "Periodic") {
startKnot = degree;
endKnot = knots.length - 1 - startKnot;
for (let i = 0; i < degree; ++i) {
controlPoints.push(controlPoints[i]);
}
}
const curve = new NURBSCurve(degree, knots, controlPoints, startKnot, endKnot);
const points = curve.getPoints(controlPoints.length * 12);
return new BufferGeometry().setFromPoints(points);
}
}
class AnimationParser {
// take raw animation clips and turn them into three.js animation clips
parse() {
const animationClips = [];
const rawClips = this.parseClips();
if (rawClips !== void 0) {
for (const key in rawClips) {
const rawClip = rawClips[key];
const clip = this.addClip(rawClip);
animationClips.push(clip);
}
}
return animationClips;
}
parseClips() {
if (fbxTree.Objects.AnimationCurve === void 0)
return void 0;
const curveNodesMap = this.parseAnimationCurveNodes();
this.parseAnimationCurves(curveNodesMap);
const layersMap = this.parseAnimationLayers(curveNodesMap);
const rawClips = this.parseAnimStacks(layersMap);
return rawClips;
}
// parse nodes in FBXTree.Objects.AnimationCurveNode
// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation )
// and is referenced by an AnimationLayer
parseAnimationCurveNodes() {
const rawCurveNodes = fbxTree.Objects.AnimationCurveNode;
const curveNodesMap = /* @__PURE__ */ new Map();
for (const nodeID in rawCurveNodes) {
const rawCurveNode = rawCurveNodes[nodeID];
if (rawCurveNode.attrName.match(/S|R|T|DeformPercent/) !== null) {
const curveNode = {
id: rawCurveNode.id,
attr: rawCurveNode.attrName,
curves: {}
};
curveNodesMap.set(curveNode.id, curveNode);
}
}
return curveNodesMap;
}
// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to
// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated
// axis ( e.g. times and values of x rotation)
parseAnimationCurves(curveNodesMap) {
const rawCurves = fbxTree.Objects.AnimationCurve;
for (const nodeID in rawCurves) {
const animationCurve = {
id: rawCurves[nodeID].id,
times: rawCurves[nodeID].KeyTime.a.map(convertFBXTimeToSeconds),
values: rawCurves[nodeID].KeyValueFloat.a
};
const relationships = connections.get(animationCurve.id);
if (relationships !== void 0) {
const animationCurveID = relationships.parents[0].ID;
const animationCurveRelationship = relationships.parents[0].relationship;
if (animationCurveRelationship.match(/X/)) {
curveNodesMap.get(animationCurveID).curves["x"] = animationCurve;
} else if (animationCurveRelationship.match(/Y/)) {
curveNodesMap.get(animationCurveID).curves["y"] = animationCurve;
} else if (animationCurveRelationship.match(/Z/)) {
curveNodesMap.get(animationCurveID).curves["z"] = animationCurve;
} else if (animationCurveRelationship.match(/d|DeformPercent/) && curveNodesMap.has(animationCurveID)) {
curveNodesMap.get(animationCurveID).curves["morph"] = animationCurve;
}
}
}
}
// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references
// to various AnimationCurveNodes and is referenced by an AnimationStack node
// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack
parseAnimationLayers(curveNodesMap) {
const rawLayers = fbxTree.Objects.AnimationLayer;
const layersMap = /* @__PURE__ */ new Map();
for (const nodeID in rawLayers) {
const layerCurveNodes = [];
const connection = connections.get(parseInt(nodeID));
if (connection !== void 0) {
const children = connection.children;
children.forEach(function(child, i) {
if (curveNodesMap.has(child.ID)) {
const curveNode = curveNodesMap.get(child.ID);
if (curveNode.curves.x !== void 0 || curveNode.curves.y !== void 0 || curveNode.curves.z !== void 0) {
if (layerCurveNodes[i] === void 0) {
const modelID = connections.get(child.ID).parents.filter(function(parent) {
return parent.relationship !== void 0;
})[0].ID;
if (modelID !== void 0) {
const rawModel = fbxTree.Objects.Model[modelID.toString()];
if (rawModel === void 0) {
console.warn("THREE.FBXLoader: Encountered a unused curve.", child);
return;
}
const node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName(rawModel.attrName) : "",
ID: rawModel.id,
initialPosition: [0, 0, 0],
initialRotation: [0, 0, 0],
initialScale: [1, 1, 1]
};
sceneGraph.traverse(function(child2) {
if (child2.ID === rawModel.id) {
node.transform = child2.matrix;
if (child2.userData.transformData)
node.eulerOrder = child2.userData.transformData.eulerOrder;
}
});
if (!node.transform)
node.transform = new Matrix4();
if ("PreRotation" in rawModel)
node.preRotation = rawModel.PreRotation.value;
if ("PostRotation" in rawModel)
node.postRotation = rawModel.PostRotation.value;
layerCurveNodes[i] = node;
}
}
if (layerCurveNodes[i])
layerCurveNodes[i][curveNode.attr] = curveNode;
} else if (curveNode.curves.morph !== void 0) {
if (layerCurveNodes[i] === void 0) {
const deformerID = connections.get(child.ID).parents.filter(function(parent) {
return parent.relationship !== void 0;
})[0].ID;
const morpherID = connections.get(deformerID).parents[0].ID;
const geoID = connections.get(morpherID).parents[0].ID;
const modelID = connections.get(geoID).parents[0].ID;
const rawModel = fbxTree.Objects.Model[modelID];
const node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName(rawModel.attrName) : "",
morphName: fbxTree.Objects.Deformer[deformerID].attrName
};
layerCurveNodes[i] = node;
}
layerCurveNodes[i][curveNode.attr] = curveNode;
}
}
});
layersMap.set(parseInt(nodeID), layerCurveNodes);
}
}
return layersMap;
}
// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation
// hierarchy. Each Stack node will be used to create a AnimationClip
parseAnimStacks(layersMap) {
const rawStacks = fbxTree.Objects.AnimationStack;
const rawClips = {};
for (const nodeID in rawStacks) {
const children = connections.get(parseInt(nodeID)).children;
if (children.length > 1) {
console.warn(
"THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers."
);
}
const layer = layersMap.get(children[0].ID);
rawClips[nodeID] = {
name: rawStacks[nodeID].attrName,
layer
};
}
return rawClips;
}
addClip(rawClip) {
let tracks = [];
const scope = this;
rawClip.layer.forEach(function(rawTracks) {
tracks = tracks.concat(scope.generateTracks(rawTracks));
});
return new AnimationClip(rawClip.name, -1, tracks);
}
generateTracks(rawTracks) {
const tracks = [];
let initialPosition = new Vector3();
let initialRotation = new Quaternion();
let initialScale = new Vector3();
if (rawTracks.transform)
rawTracks.transform.decompose(initialPosition, initialRotation, initialScale);
initialPosition = initialPosition.toArray();
initialRotation = new Euler().setFromQuaternion(initialRotation, rawTracks.eulerOrder).toArray();
initialScale = initialScale.toArray();
if (rawTracks.T !== void 0 && Object.keys(rawTracks.T.curves).length > 0) {
const positionTrack = this.generateVectorTrack(
rawTracks.modelName,
rawTracks.T.curves,
initialPosition,
"position"
);
if (positionTrack !== void 0)
tracks.push(positionTrack);
}
if (rawTracks.R !== void 0 && Object.keys(rawTracks.R.curves).length > 0) {
const rotationTrack = this.generateRotationTrack(
rawTracks.modelName,
rawTracks.R.curves,
initialRotation,
rawTracks.preRotation,
rawTracks.postRotation,
rawTracks.eulerOrder
);
if (rotationTrack !== void 0)
tracks.push(rotationTrack);
}
if (rawTracks.S !== void 0 && Object.keys(rawTracks.S.curves).length > 0) {
const scaleTrack = this.generateVectorTrack(rawTracks.modelName, rawTracks.S.curves, initialScale, "scale");
if (scaleTrack !== void 0)
tracks.push(scaleTrack);
}
if (rawTracks.DeformPercent !== void 0) {
const morphTrack = this.generateMorphTrack(rawTracks);
if (morphTrack !== void 0)
tracks.push(morphTrack);
}
return tracks;
}
generateVectorTrack(modelName, curves, initialValue, type) {
const times = this.getTimesForAllAxes(curves);
const values = this.getKeyframeTrackValues(times, curves, initialValue);
return new VectorKeyframeTrack(modelName + "." + type, times, values);
}
generateRotationTrack(modelName, curves, initialValue, preRotation, postRotation, eulerOrder) {
if (curves.x !== void 0) {
this.interpolateRotations(curves.x);
curves.x.values = curves.x.values.map(MathUtils.degToRad);
}
if (curves.y !== void 0) {
this.interpolateRotations(curves.y);
curves.y.values = curves.y.values.map(MathUtils.degToRad);
}
if (curves.z !== void 0) {
this.interpolateRotations(curves.z);
curves.z.values = curves.z.values.map(MathUtils.degToRad);
}
const times = this.getTimesForAllAxes(curves);
const values = this.getKeyframeTrackValues(times, curves, initialValue);
if (preRotation !== void 0) {
preRotation = preRotation.map(MathUtils.degToRad);
preRotation.push(eulerOrder);
preRotation = new Euler().fromArray(preRotation);
preRotation = new Quaternion().setFromEuler(preRotation);
}
if (postRotation !== void 0) {
postRotation = postRotation.map(MathUtils.degToRad);
postRotation.push(eulerOrder);
postRotation = new Euler().fromArray(postRotation);
postRotation = new Quaternion().setFromEuler(postRotation).invert();
}
const quaternion = new Quaternion();
const euler = new Euler();
const quaternionValues = [];
for (let i = 0; i < values.length; i += 3) {
euler.set(values[i], values[i + 1], values[i + 2], eulerOrder);
quaternion.setFromEuler(euler);
if (preRotation !== void 0)
quaternion.premultiply(preRotation);
if (postRotation !== void 0)
quaternion.multiply(postRotation);
quaternion.toArray(quaternionValues, i / 3 * 4);
}
return new QuaternionKeyframeTrack(modelName + ".quaternion", times, quaternionValues);
}
generateMorphTrack(rawTracks) {
const curves = rawTracks.DeformPercent.curves.morph;
const values = curves.values.map(function(val) {
return val / 100;
});
const morphNum = sceneGraph.getObjectByName(rawTracks.modelName).morphTargetDictionary[rawTracks.morphName];
return new NumberKeyframeTrack(
rawTracks.modelName + ".morphTargetInfluences[" + morphNum + "]",
curves.times,
values
);
}
// For all animated objects, times are defined separately for each axis
// Here we'll combine the times into one sorted array without duplicates
getTimesForAllAxes(curves) {
let times = [];
if (curves.x !== void 0)
times = times.concat(curves.x.times);
if (curves.y !== void 0)
times = times.concat(curves.y.times);
if (curves.z !== void 0)
times = times.concat(curves.z.times);
times = times.sort(function(a, b) {
return a - b;
});
if (times.length > 1) {
let targetIndex = 1;
let lastValue = times[0];
for (let i = 1; i < times.length; i++) {
const currentValue = times[i];
if (currentValue !== lastValue) {
times[targetIndex] = currentValue;
lastValue = currentValue;
targetIndex++;
}
}
times = times.slice(0, targetIndex);
}
return times;
}
getKeyframeTrackValues(times, curves, initialValue) {
const prevValue = initialValue;
const values = [];
let xIndex = -1;
let yIndex = -1;
let zIndex = -1;
times.forEach(function(time) {
if (curves.x)
xIndex = curves.x.times.indexOf(time);
if (curves.y)
yIndex = curves.y.times.indexOf(time);
if (curves.z)
zIndex = curves.z.times.indexOf(time);
if (xIndex !== -1) {
const xValue = curves.x.values[xIndex];
values.push(xValue);
prevValue[0] = xValue;
} else {
values.push(prevValue[0]);
}
if (yIndex !== -1) {
const yValue = curves.y.values[yIndex];
values.push(yValue);
prevValue[1] = yValue;
} else {
values.push(prevValue[1]);
}
if (zIndex !== -1) {
const zValue = curves.z.values[zIndex];
values.push(zValue);
prevValue[2] = zValue;
} else {
values.push(prevValue[2]);
}
});
return values;
}
// Rotations are defined as Euler angles which can have values of any size
// These will be converted to quaternions which don't support values greater than
// PI, so we'll interpolate large rotations
interpolateRotations(curve) {
for (let i = 1; i < curve.values.length; i++) {
const initialValue = curve.values[i - 1];
const valuesSpan = curve.values[i] - initialValue;
const absoluteSpan = Math.abs(valuesSpan);
if (absoluteSpan >= 180) {
const numSubIntervals = absoluteSpan / 180;
const step = valuesSpan / numSubIntervals;
let nextValue = initialValue + step;
const initialTime = curve.times[i - 1];
const timeSpan = curve.times[i] - initialTime;
const interval = timeSpan / numSubIntervals;
let nextTime = initialTime + interval;
const interpolatedTimes = [];
const interpolatedValues = [];
while (nextTime < curve.times[i]) {
interpolatedTimes.push(nextTime);
nextTime += interval;
interpolatedValues.push(nextValue);
nextValue += step;
}
curve.times = inject(curve.times, i, interpolatedTimes);
curve.values = inject(curve.values, i, interpolatedValues);
}
}
}
}
class TextParser {
getPrevNode() {
return this.nodeStack[this.currentIndent - 2];
}
getCurrentNode() {
return this.nodeStack[this.currentIndent - 1];
}
getCurrentProp() {
return this.currentProp;
}
pushStack(node) {
this.nodeStack.push(node);
this.currentIndent += 1;
}
popStack() {
this.nodeStack.pop();
this.currentIndent -= 1;
}
setCurrentProp(val, name) {
this.currentProp = val;
this.currentPropName = name;
}
parse(text) {
this.currentIndent = 0;
this.allNodes = new FBXTree();
this.nodeStack = [];
this.currentProp = [];
this.currentPropName = "";
const scope = this;
const split = text.split(/[\r\n]+/);
split.forEach(function(line, i) {
const matchComment = line.match(/^[\s\t]*;/);
const matchEmpty = line.match(/^[\s\t]*$/);
if (matchComment || matchEmpty)
return;
const matchBeginning = line.match("^\\t{" + scope.currentIndent + "}(\\w+):(.*){", "");
const matchProperty = line.match("^\\t{" + scope.currentIndent + "}(\\w+):[\\s\\t\\r\\n](.*)");
const matchEnd = line.match("^\\t{" + (scope.currentIndent - 1) + "}}");
if (matchBeginning) {
scope.parseNodeBegin(line, matchBeginning);
} else if (matchProperty) {
scope.parseNodeProperty(line, matchProperty, split[++i]);
} else if (matchEnd) {
scope.popStack();
} else if (line.match(/^[^\s\t}]/)) {
scope.parseNodePropertyContinued(line);
}
});
return this.allNodes;
}
parseNodeBegin(line, property) {
const nodeName = property[1].trim().replace(/^"/, "").replace(/"$/, "");
const nodeAttrs = property[2].split(",").map(function(attr) {
return attr.trim().replace(/^"/, "").replace(/"$/, "");
});
const node = { name: nodeName };
const attrs = this.parseNodeAttr(nodeAttrs);
const currentNode = this.getCurrentNode();
if (this.currentIndent === 0) {
this.allNodes.add(nodeName, node);
} else {
if (nodeName in currentNode) {
if (nodeName === "PoseNode") {
currentNode.PoseNode.push(node);
} else if (currentNode[nodeName].id !== void 0) {
currentNode[nodeName] = {};
currentNode[nodeName][currentNode[nodeName].id] = currentNode[nodeName];
}
if (attrs.id !== "")
currentNode[nodeName][attrs.id] = node;
} else if (typeof attrs.id === "number") {
currentNode[nodeName] = {};
currentNode[nodeName][attrs.id] = node;
} else if (nodeName !== "Properties70") {
if (nodeName === "PoseNode")
currentNode[nodeName] = [node];
else
currentNode[nodeName] = node;
}
}
if (typeof attrs.id === "number")
node.id = attrs.id;
if (attrs.name !== "")
node.attrName = attrs.name;
if (attrs.type !== "")
node.attrType = attrs.type;
this.pushStack(node);
}
parseNodeAttr(attrs) {
let id = attrs[0];
if (attrs[0] !== "") {
id = parseInt(attrs[0]);
if (isNaN(id)) {
id = attrs[0];
}
}
let name = "", type = "";
if (attrs.length > 1) {
name = attrs[1].replace(/^(\w+)::/, "");
type = attrs[2];
}
return { id, name, type };
}
parseNodeProperty(line, property, contentLine) {
let propName = property[1].replace(/^"/, "").replace(/"$/, "").trim();
let propValue = property[2].replace(/^"/, "").replace(/"$/, "").trim();
if (propName === "Content" && propValue === ",") {
propValue = contentLine.replace(/"/g, "").replace(/,$/, "").trim();
}
const currentNode = this.getCurrentNode();
const parentName = currentNode.name;
if (parentName === "Properties70") {
this.parseNodeSpecialProperty(line, propName, propValue);
return;
}
if (propName === "C") {
const connProps = propValue.split(",").slice(1);
const from = parseInt(connProps[0]);
const to = parseInt(connProps[1]);
let rest = propValue.split(",").slice(3);
rest = rest.map(function(elem) {
return elem.trim().replace(/^"/, "");
});
propName = "connections";
propValue = [from, to];
append(propValue, rest);
if (currentNode[propName] === void 0) {
currentNode[propName] = [];
}
}
if (propName === "Node")
currentNode.id = propValue;
if (propName in currentNode && Array.isArray(currentNode[propName])) {
currentNode[propName].push(propValue);
} else {
if (propName !== "a")
currentNode[propName] = propValue;
else
currentNode.a = propValue;
}
this.setCurrentProp(currentNode, propName);
if (propName === "a" && propValue.slice(-1) !== ",") {
currentNode.a = parseNumberArray(propValue);
}
}
parseNodePropertyContinued(line) {
const currentNode = this.getCurrentNode();
currentNode.a += line;
if (line.slice(-1) !== ",") {
currentNode.a = parseNumberArray(currentNode.a);
}
}
// parse "Property70"
parseNodeSpecialProperty(line, propName, propValue) {
const props = propValue.split('",').map(function(prop) {
return prop.trim().replace(/^\"/, "").replace(/\s/, "_");
});
const innerPropName = props[0];
const innerPropType1 = props[1];
const innerPropType2 = props[2];
const innerPropFlag = props[3];
let innerPropValue = props[4];
switch (innerPropType1) {
case "int":
case "enum":
case "bool":
case "ULongLong":
case "double":
case "Number":
case "FieldOfView":
innerPropValue = parseFloat(innerPropValue);
break;
case "Color":
case "ColorRGB":
case "Vector3D":
case "Lcl_Translation":
case "Lcl_Rotation":
case "Lcl_Scaling":
innerPropValue = parseNumberArray(innerPropValue);
break;
}
this.getPrevNode()[innerPropName] = {
type: innerPropType1,
type2: innerPropType2,
flag: innerPropFlag,
value: innerPropValue
};
this.setCurrentProp(this.getPrevNode(), innerPropName);
}
}
class BinaryParser {
parse(buffer) {
const reader = new BinaryReader(buffer);
reader.skip(23);
const version = reader.getUint32();
if (version < 6400) {
throw new Error("THREE.FBXLoader: FBX version not supported, FileVersion: " + version);
}
const allNodes = new FBXTree();
while (!this.endOfContent(reader)) {
const node = this.parseNode(reader, version);
if (node !== null)
allNodes.add(node.name, node);
}
return allNodes;
}
// Check if reader has reached the end of content.
endOfContent(reader) {
if (reader.size() % 16 === 0) {
return (reader.getOffset() + 160 + 16 & ~15) >= reader.size();
} else {
return reader.getOffset() + 160 + 16 >= reader.size();
}
}
// recursively parse nodes until the end of the file is reached
parseNode(reader, version) {
const node = {};
const endOffset = version >= 7500 ? reader.getUint64() : reader.getUint32();
const numProperties = version >= 7500 ? reader.getUint64() : reader.getUint32();
version >= 7500 ? reader.getUint64() : reader.getUint32();
const nameLen = reader.getUint8();
const name = reader.getString(nameLen);
if (endOffset === 0)
return null;
const propertyList = [];
for (let i = 0; i < numProperties; i++) {
propertyList.push(this.parseProperty(reader));
}
const id = propertyList.length > 0 ? propertyList[0] : "";
const attrName = propertyList.length > 1 ? propertyList[1] : "";
const attrType = propertyList.length > 2 ? propertyList[2] : "";
node.singleProperty = numProperties === 1 && reader.getOffset() === endOffset ? true : false;
while (endOffset > reader.getOffset()) {
const subNode = this.parseNode(reader, version);
if (subNode !== null)
this.parseSubNode(name, node, subNode);
}
node.propertyList = propertyList;
if (typeof id === "number")
node.id = id;
if (attrName !== "")
node.attrName = attrName;
if (attrType !== "")
node.attrType = attrType;
if (name !== "")
node.name = name;
return node;
}
parseSubNode(name, node, subNode) {
if (subNode.singleProperty === true) {
const value = subNode.propertyList[0];
if (Array.isArray(value)) {
node[subNode.name] = subNode;
subNode.a = value;
} else {
node[subNode.name] = value;
}
} else if (name === "Connections" && subNode.name === "C") {
const array = [];
subNode.propertyList.forEach(function(property, i) {
if (i !== 0)
array.push(property);
});
if (node.connections === void 0) {
node.connections = [];
}
node.connections.push(array);
} else if (subNode.name === "Properties70") {
const keys = Object.keys(subNode);
keys.forEach(function(key) {
node[key] = subNode[key];
});
} else if (name === "Properties70" && subNode.name === "P") {
let innerPropName = subNode.propertyList[0];
let innerPropType1 = subNode.propertyList[1];
const innerPropType2 = subNode.propertyList[2];
const innerPropFlag = subNode.propertyList[3];
let innerPropValue;
if (innerPropName.indexOf("Lcl ") === 0)
innerPropName = innerPropName.replace("Lcl ", "Lcl_");
if (innerPropType1.indexOf("Lcl ") === 0)
innerPropType1 = innerPropType1.replace("Lcl ", "Lcl_");
if (innerPropType1 === "Color" || innerPropType1 === "ColorRGB" || innerPropType1 === "Vector" || innerPropType1 === "Vector3D" || innerPropType1.indexOf("Lcl_") === 0) {
innerPropValue = [subNode.propertyList[4], subNode.propertyList[5], subNode.propertyList[6]];
} else {
innerPropValue = subNode.propertyList[4];
}
node[innerPropName] = {
type: innerPropType1,
type2: innerPropType2,
flag: innerPropFlag,
value: innerPropValue
};
} else if (node[subNode.name] === void 0) {
if (typeof subNode.id === "number") {
node[subNode.name] = {};
node[subNode.name][subNode.id] = subNode;
} else {
node[subNode.name] = subNode;
}
} else {
if (subNode.name === "PoseNode") {
if (!Array.isArray(node[subNode.name])) {
node[subNode.name] = [node[subNode.name]];
}
node[subNode.name].push(subNode);
} else if (node[subNode.name][subNode.id] === void 0) {
node[subNode.name][subNode.id] = subNode;
}
}
}
parseProperty(reader) {
const type = reader.getString(1);
let length;
switch (type) {
case "C":
return reader.getBoolean();
case "D":
return reader.getFloat64();
case "F":
return reader.getFloat32();
case "I":
return reader.getInt32();
case "L":
return reader.getInt64();
case "R":
length = reader.getUint32();
return reader.getArrayBuffer(length);
case "S":
length = reader.getUint32();
return reader.getString(length);
case "Y":
return reader.getInt16();
case "b":
case "c":
case "d":
case "f":
case "i":
case "l":
const arrayLength = reader.getUint32();
const encoding = reader.getUint32();
const compressedLength = reader.getUint32();
if (encoding === 0) {
switch (type) {
case "b":
case "c":
return reader.getBooleanArray(arrayLength);
case "d":
return reader.getFloat64Array(arrayLength);
case "f":
return reader.getFloat32Array(arrayLength);
case "i":
return reader.getInt32Array(arrayLength);
case "l":
return reader.getInt64Array(arrayLength);
}
}
const data = unzlibSync(new Uint8Array(reader.getArrayBuffer(compressedLength)));
const reader2 = new BinaryReader(data.buffer);
switch (type) {
case "b":
case "c":
return reader2.getBooleanArray(arrayLength);
case "d":
return reader2.getFloat64Array(arrayLength);
case "f":
return reader2.getFloat32Array(arrayLength);
case "i":
return reader2.getInt32Array(arrayLength);
case "l":
return reader2.getInt64Array(arrayLength);
}
default:
throw new Error("THREE.FBXLoader: Unknown property type " + type);
}
}
}
class BinaryReader {
constructor(buffer, littleEndian) {
this.dv = new DataView(buffer);
this.offset = 0;
this.littleEndian = littleEndian !== void 0 ? littleEndian : true;
}
getOffset() {
return this.offset;
}
size() {
return this.dv.buffer.byteLength;
}
skip(length) {
this.offset += length;
}
// seems like true/false representation depends on exporter.
// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54)
// then sees LSB.
getBoolean() {
return (this.getUint8() & 1) === 1;
}
getBooleanArray(size) {
const a = [];
for (let i = 0; i < size; i++) {
a.push(this.getBoolean());
}
return a;
}
getUint8() {
const value = this.dv.getUint8(this.offset);
this.offset += 1;
return value;
}
getInt16() {
const value = this.dv.getInt16(this.offset, this.littleEndian);
this.offset += 2;
return value;
}
getInt32() {
const value = this.dv.getInt32(this.offset, this.littleEndian);
this.offset += 4;
return value;
}
getInt32Array(size) {
const a = [];
for (let i = 0; i < size; i++) {
a.push(this.getInt32());
}
return a;
}
getUint32() {
const value = this.dv.getUint32(this.offset, this.littleEndian);
this.offset += 4;
return value;
}
// JavaScript doesn't support 64-bit integer so calculate this here
// 1 << 32 will return 1 so using multiply operation instead here.
// There's a possibility that this method returns wrong value if the value
// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER.
// TODO: safely handle 64-bit integer
getInt64() {
let low, high;
if (this.littleEndian) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
if (high & 2147483648) {
high = ~high & 4294967295;
low = ~low & 4294967295;
if (low === 4294967295)
high = high + 1 & 4294967295;
low = low + 1 & 4294967295;
return -(high * 4294967296 + low);
}
return high * 4294967296 + low;
}
getInt64Array(size) {
const a = [];
for (let i = 0; i < size; i++) {
a.push(this.getInt64());
}
return a;
}
// Note: see getInt64() comment
getUint64() {
let low, high;
if (this.littleEndian) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
return high * 4294967296 + low;
}
getFloat32() {
const value = this.dv.getFloat32(this.offset, this.littleEndian);
this.offset += 4;
return value;
}
getFloat32Array(size) {
const a = [];
for (let i = 0; i < size; i++) {
a.push(this.getFloat32());
}
return a;
}
getFloat64() {
const value = this.dv.getFloat64(this.offset, this.littleEndian);
this.offset += 8;
return value;
}
getFloat64Array(size) {
const a = [];
for (let i = 0; i < size; i++) {
a.push(this.getFloat64());
}
return a;
}
getArrayBuffer(size) {
const value = this.dv.buffer.slice(this.offset, this.offset + size);
this.offset += size;
return value;
}
getString(size) {
let a = [];
for (let i = 0; i < size; i++) {
a[i] = this.getUint8();
}
const nullByte = a.indexOf(0);
if (nullByte >= 0)
a = a.slice(0, nullByte);
return decodeText(new Uint8Array(a));
}
}
class FBXTree {
add(key, val) {
this[key] = val;
}
}
function isFbxFormatBinary(buffer) {
const CORRECT = "Kaydara FBX Binary \0";
return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString(buffer, 0, CORRECT.length);
}
function isFbxFormatASCII(text) {
const CORRECT = [
"K",
"a",
"y",
"d",
"a",
"r",
"a",
"\\",
"F",
"B",
"X",
"\\",
"B",
"i",
"n",
"a",
"r",
"y",
"\\",
"\\"
];
let cursor = 0;
function read(offset) {
const result = text[offset - 1];
text = text.slice(cursor + offset);
cursor++;
return result;
}
for (let i = 0; i < CORRECT.length; ++i) {
const num = read(1);
if (num === CORRECT[i]) {
return false;
}
}
return true;
}
function getFbxVersion(text) {
const versionRegExp = /FBXVersion: (\d+)/;
const match = text.match(versionRegExp);
if (match) {
const version = parseInt(match[1]);
return version;
}
throw new Error("THREE.FBXLoader: Cannot find the version number for the file given.");
}
function convertFBXTimeToSeconds(time) {
return time / 46186158e3;
}
const dataArray = [];
function getData(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) {
let index;
switch (infoObject.mappingType) {
case "ByPolygonVertex":
index = polygonVertexIndex;
break;
case "ByPolygon":
index = polygonIndex;
break;
case "ByVertice":
index = vertexIndex;
break;
case "AllSame":
index = infoObject.indices[0];
break;
default:
console.warn("THREE.FBXLoader: unknown attribute mapping type " + infoObject.mappingType);
}
if (infoObject.referenceType === "IndexToDirect")
index = infoObject.indices[index];
const from = index * infoObject.dataSize;
const to = from + infoObject.dataSize;
return slice(dataArray, infoObject.buffer, from, to);
}
const tempEuler = /* @__PURE__ */ new Euler();
const tempVec = /* @__PURE__ */ new Vector3();
function generateTransform(transformData) {
const lTranslationM = new Matrix4();
const lPreRotationM = new Matrix4();
const lRotationM = new Matrix4();
const lPostRotationM = new Matrix4();
const lScalingM = new Matrix4();
const lScalingPivotM = new Matrix4();
const lScalingOffsetM = new Matrix4();
const lRotationOffsetM = new Matrix4();
const lRotationPivotM = new Matrix4();
const lParentGX = new Matrix4();
const lParentLX = new Matrix4();
const lGlobalT = new Matrix4();
const inheritType = transformData.inheritType ? transformData.inheritType : 0;
if (transformData.translation)
lTranslationM.setPosition(tempVec.fromArray(transformData.translation));
if (transformData.preRotation) {
const array = transformData.preRotation.map(MathUtils.degToRad);
array.push(transformData.eulerOrder);
lPreRotationM.makeRotationFromEuler(tempEuler.fromArray(array));
}
if (transformData.rotation) {
const array = transformData.rotation.map(MathUtils.degToRad);
array.push(transformData.eulerOrder);
lRotationM.makeRotationFromEuler(tempEuler.fromArray(array));
}
if (transformData.postRotation) {
const array = transformData.postRotation.map(MathUtils.degToRad);
array.push(transformData.eulerOrder);
lPostRotationM.makeRotationFromEuler(tempEuler.fromArray(array));
lPostRotationM.invert();
}
if (transformData.scale)
lScalingM.scale(tempVec.fromArray(transformData.scale));
if (transformData.scalingOffset)
lScalingOffsetM.setPosition(tempVec.fromArray(transformData.scalingOffset));
if (transformData.scalingPivot)
lScalingPivotM.setPosition(tempVec.fromArray(transformData.scalingPivot));
if (transformData.rotationOffset)
lRotationOffsetM.setPosition(tempVec.fromArray(transformData.rotationOffset));
if (transformData.rotationPivot)
lRotationPivotM.setPosition(tempVec.fromArray(transformData.rotationPivot));
if (transformData.parentMatrixWorld) {
lParentLX.copy(transformData.parentMatrix);
lParentGX.copy(transformData.parentMatrixWorld);
}
const lLRM = lPreRotationM.clone().multiply(lRotationM).multiply(lPostRotationM);
const lParentGRM = new Matrix4();
lParentGRM.extractRotation(lParentGX);
const lParentTM = new Matrix4();
lParentTM.copyPosition(lParentGX);
const lParentGRSM = lParentTM.clone().invert().multiply(lParentGX);
const lParentGSM = lParentGRM.clone().invert().multiply(lParentGRSM);
const lLSM = lScalingM;
const lGlobalRS = new Matrix4();
if (inheritType === 0) {
lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM).multiply(lLSM);
} else if (inheritType === 1) {
lGlobalRS.copy(lParentGRM).multiply(lParentGSM).multiply(lLRM).multiply(lLSM);
} else {
const lParentLSM = new Matrix4().scale(new Vector3().setFromMatrixScale(lParentLX));
const lParentLSM_inv = lParentLSM.clone().invert();
const lParentGSM_noLocal = lParentGSM.clone().multiply(lParentLSM_inv);
lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM_noLocal).multiply(lLSM);
}
const lRotationPivotM_inv = lRotationPivotM.clone().invert();
const lScalingPivotM_inv = lScalingPivotM.clone().invert();
let lTransform = lTranslationM.clone().multiply(lRotationOffsetM).multiply(lRotationPivotM).multiply(lPreRotationM).multiply(lRotationM).multiply(lPostRotationM).multiply(lRotationPivotM_inv).multiply(lScalingOffsetM).multiply(lScalingPivotM).multiply(lScalingM).multiply(lScalingPivotM_inv);
const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition(lTransform);
const lGlobalTranslation = lParentGX.clone().multiply(lLocalTWithAllPivotAndOffsetInfo);
lGlobalT.copyPosition(lGlobalTranslation);
lTransform = lGlobalT.clone().multiply(lGlobalRS);
lTransform.premultiply(lParentGX.invert());
return lTransform;
}
function getEulerOrder(order) {
order = order || 0;
const enums = [
"ZYX",
// -> XYZ extrinsic
"YZX",
// -> XZY extrinsic
"XZY",
// -> YZX extrinsic
"ZXY",
// -> YXZ extrinsic
"YXZ",
// -> ZXY extrinsic
"XYZ"
// -> ZYX extrinsic
//'SphericXYZ', // not possible to support
];
if (order === 6) {
console.warn("THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.");
return enums[0];
}
return enums[order];
}
function parseNumberArray(value) {
const array = value.split(",").map(function(val) {
return parseFloat(val);
});
return array;
}
function convertArrayBufferToString(buffer, from, to) {
if (from === void 0)
from = 0;
if (to === void 0)
to = buffer.byteLength;
return decodeText(new Uint8Array(buffer, from, to));
}
function append(a, b) {
for (let i = 0, j = a.length, l = b.length; i < l; i++, j++) {
a[j] = b[i];
}
}
function slice(a, b, from, to) {
for (let i = from, j = 0; i < to; i++, j++) {
a[j] = b[i];
}
return a;
}
function inject(a1, index, a2) {
return a1.slice(0, index).concat(a2).concat(a1.slice(index));
}
export {
FBXLoader
};
//# sourceMappingURL=FBXLoader.js.map