228 lines
5.6 KiB
JavaScript
228 lines
5.6 KiB
JavaScript
import { Vector4, Vector3 } from "three";
|
|
function findSpan(p, u, U) {
|
|
const n = U.length - p - 1;
|
|
if (u >= U[n]) {
|
|
return n - 1;
|
|
}
|
|
if (u <= U[p]) {
|
|
return p;
|
|
}
|
|
let low = p;
|
|
let high = n;
|
|
let mid = Math.floor((low + high) / 2);
|
|
while (u < U[mid] || u >= U[mid + 1]) {
|
|
if (u < U[mid]) {
|
|
high = mid;
|
|
} else {
|
|
low = mid;
|
|
}
|
|
mid = Math.floor((low + high) / 2);
|
|
}
|
|
return mid;
|
|
}
|
|
function calcBasisFunctions(span, u, p, U) {
|
|
const N = [];
|
|
const left = [];
|
|
const right = [];
|
|
N[0] = 1;
|
|
for (let j = 1; j <= p; ++j) {
|
|
left[j] = u - U[span + 1 - j];
|
|
right[j] = U[span + j] - u;
|
|
let saved = 0;
|
|
for (let r = 0; r < j; ++r) {
|
|
const rv = right[r + 1];
|
|
const lv = left[j - r];
|
|
const temp = N[r] / (rv + lv);
|
|
N[r] = saved + rv * temp;
|
|
saved = lv * temp;
|
|
}
|
|
N[j] = saved;
|
|
}
|
|
return N;
|
|
}
|
|
function calcBSplinePoint(p, U, P, u) {
|
|
const span = findSpan(p, u, U);
|
|
const N = calcBasisFunctions(span, u, p, U);
|
|
const C = new Vector4(0, 0, 0, 0);
|
|
for (let j = 0; j <= p; ++j) {
|
|
const point = P[span - p + j];
|
|
const Nj = N[j];
|
|
const wNj = point.w * Nj;
|
|
C.x += point.x * wNj;
|
|
C.y += point.y * wNj;
|
|
C.z += point.z * wNj;
|
|
C.w += point.w * Nj;
|
|
}
|
|
return C;
|
|
}
|
|
function calcBasisFunctionDerivatives(span, u, p, n, U) {
|
|
const zeroArr = [];
|
|
for (let i = 0; i <= p; ++i)
|
|
zeroArr[i] = 0;
|
|
const ders = [];
|
|
for (let i = 0; i <= n; ++i)
|
|
ders[i] = zeroArr.slice(0);
|
|
const ndu = [];
|
|
for (let i = 0; i <= p; ++i)
|
|
ndu[i] = zeroArr.slice(0);
|
|
ndu[0][0] = 1;
|
|
const left = zeroArr.slice(0);
|
|
const right = zeroArr.slice(0);
|
|
for (let j = 1; j <= p; ++j) {
|
|
left[j] = u - U[span + 1 - j];
|
|
right[j] = U[span + j] - u;
|
|
let saved = 0;
|
|
for (let r2 = 0; r2 < j; ++r2) {
|
|
const rv = right[r2 + 1];
|
|
const lv = left[j - r2];
|
|
ndu[j][r2] = rv + lv;
|
|
const temp = ndu[r2][j - 1] / ndu[j][r2];
|
|
ndu[r2][j] = saved + rv * temp;
|
|
saved = lv * temp;
|
|
}
|
|
ndu[j][j] = saved;
|
|
}
|
|
for (let j = 0; j <= p; ++j) {
|
|
ders[0][j] = ndu[j][p];
|
|
}
|
|
for (let r2 = 0; r2 <= p; ++r2) {
|
|
let s1 = 0;
|
|
let s2 = 1;
|
|
const a = [];
|
|
for (let i = 0; i <= p; ++i) {
|
|
a[i] = zeroArr.slice(0);
|
|
}
|
|
a[0][0] = 1;
|
|
for (let k = 1; k <= n; ++k) {
|
|
let d = 0;
|
|
const rk = r2 - k;
|
|
const pk = p - k;
|
|
if (r2 >= k) {
|
|
a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
|
|
d = a[s2][0] * ndu[rk][pk];
|
|
}
|
|
const j1 = rk >= -1 ? 1 : -rk;
|
|
const j2 = r2 - 1 <= pk ? k - 1 : p - r2;
|
|
for (let j3 = j1; j3 <= j2; ++j3) {
|
|
a[s2][j3] = (a[s1][j3] - a[s1][j3 - 1]) / ndu[pk + 1][rk + j3];
|
|
d += a[s2][j3] * ndu[rk + j3][pk];
|
|
}
|
|
if (r2 <= pk) {
|
|
a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r2];
|
|
d += a[s2][k] * ndu[r2][pk];
|
|
}
|
|
ders[k][r2] = d;
|
|
const j = s1;
|
|
s1 = s2;
|
|
s2 = j;
|
|
}
|
|
}
|
|
let r = p;
|
|
for (let k = 1; k <= n; ++k) {
|
|
for (let j = 0; j <= p; ++j) {
|
|
ders[k][j] *= r;
|
|
}
|
|
r *= p - k;
|
|
}
|
|
return ders;
|
|
}
|
|
function calcBSplineDerivatives(p, U, P, u, nd) {
|
|
const du = nd < p ? nd : p;
|
|
const CK = [];
|
|
const span = findSpan(p, u, U);
|
|
const nders = calcBasisFunctionDerivatives(span, u, p, du, U);
|
|
const Pw = [];
|
|
for (let i = 0; i < P.length; ++i) {
|
|
const point = P[i].clone();
|
|
const w = point.w;
|
|
point.x *= w;
|
|
point.y *= w;
|
|
point.z *= w;
|
|
Pw[i] = point;
|
|
}
|
|
for (let k = 0; k <= du; ++k) {
|
|
const point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
|
|
for (let j = 1; j <= p; ++j) {
|
|
point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
|
|
}
|
|
CK[k] = point;
|
|
}
|
|
for (let k = du + 1; k <= nd + 1; ++k) {
|
|
CK[k] = new Vector4(0, 0, 0);
|
|
}
|
|
return CK;
|
|
}
|
|
function calcKoverI(k, i) {
|
|
let nom = 1;
|
|
for (let j = 2; j <= k; ++j) {
|
|
nom *= j;
|
|
}
|
|
let denom = 1;
|
|
for (let j = 2; j <= i; ++j) {
|
|
denom *= j;
|
|
}
|
|
for (let j = 2; j <= k - i; ++j) {
|
|
denom *= j;
|
|
}
|
|
return nom / denom;
|
|
}
|
|
function calcRationalCurveDerivatives(Pders) {
|
|
const nd = Pders.length;
|
|
const Aders = [];
|
|
const wders = [];
|
|
for (let i = 0; i < nd; ++i) {
|
|
const point = Pders[i];
|
|
Aders[i] = new Vector3(point.x, point.y, point.z);
|
|
wders[i] = point.w;
|
|
}
|
|
const CK = [];
|
|
for (let k = 0; k < nd; ++k) {
|
|
const v = Aders[k].clone();
|
|
for (let i = 1; i <= k; ++i) {
|
|
v.sub(CK[k - i].clone().multiplyScalar(calcKoverI(k, i) * wders[i]));
|
|
}
|
|
CK[k] = v.divideScalar(wders[0]);
|
|
}
|
|
return CK;
|
|
}
|
|
function calcNURBSDerivatives(p, U, P, u, nd) {
|
|
const Pders = calcBSplineDerivatives(p, U, P, u, nd);
|
|
return calcRationalCurveDerivatives(Pders);
|
|
}
|
|
function calcSurfacePoint(p, q, U, V, P, u, v, target) {
|
|
const uspan = findSpan(p, u, U);
|
|
const vspan = findSpan(q, v, V);
|
|
const Nu = calcBasisFunctions(uspan, u, p, U);
|
|
const Nv = calcBasisFunctions(vspan, v, q, V);
|
|
const temp = [];
|
|
for (let l = 0; l <= q; ++l) {
|
|
temp[l] = new Vector4(0, 0, 0, 0);
|
|
for (let k = 0; k <= p; ++k) {
|
|
const point = P[uspan - p + k][vspan - q + l].clone();
|
|
const w = point.w;
|
|
point.x *= w;
|
|
point.y *= w;
|
|
point.z *= w;
|
|
temp[l].add(point.multiplyScalar(Nu[k]));
|
|
}
|
|
}
|
|
const Sw = new Vector4(0, 0, 0, 0);
|
|
for (let l = 0; l <= q; ++l) {
|
|
Sw.add(temp[l].multiplyScalar(Nv[l]));
|
|
}
|
|
Sw.divideScalar(Sw.w);
|
|
target.set(Sw.x, Sw.y, Sw.z);
|
|
}
|
|
export {
|
|
calcBSplineDerivatives,
|
|
calcBSplinePoint,
|
|
calcBasisFunctionDerivatives,
|
|
calcBasisFunctions,
|
|
calcKoverI,
|
|
calcNURBSDerivatives,
|
|
calcRationalCurveDerivatives,
|
|
calcSurfacePoint,
|
|
findSpan
|
|
};
|
|
//# sourceMappingURL=NURBSUtils.js.map
|