summit/backend/venv/lib/python3.12/site-packages/rasterio/rio/shapes.py

131 lines
4.2 KiB
Python

"""$ rio shapes"""
import logging
import click
import cligj
import rasterio
from rasterio.rio import options
from rasterio.features import dataset_features
from rasterio.rio.helpers import write_features
logger = logging.getLogger(__name__)
@click.command(short_help="Write shapes extracted from bands or masks.")
@options.file_in_arg
@options.output_opt
@cligj.precision_opt
@cligj.indent_opt
@cligj.compact_opt
@cligj.projection_geographic_opt
@cligj.projection_projected_opt
@options.sequence_opt
@cligj.use_rs_opt
@cligj.geojson_type_feature_opt(True)
@cligj.geojson_type_bbox_opt(False)
@click.option('--band/--mask', default=True,
help="Choose to extract from a band (the default) or a mask.")
@click.option('--bidx', 'bandidx', type=int, default=None,
help="Index of the band or mask that is the source of shapes.")
@click.option('--sampling', type=int, default=1,
help="Inverse of the sampling fraction; "
"a value of 10 decimates.")
@click.option('--with-nodata/--without-nodata', default=False,
help="Include or do not include (the default) nodata regions.")
@click.option('--as-mask/--not-as-mask', default=False,
help="Interpret a band as a mask and output only one class of "
"valid data shapes.")
@click.pass_context
def shapes(
ctx, input, output, precision, indent, compact, projection, sequence,
use_rs, geojson_type, band, bandidx, sampling, with_nodata, as_mask):
"""Extracts shapes from one band or mask of a dataset and writes
them out as GeoJSON. Unless otherwise specified, the shapes will be
transformed to WGS 84 coordinates.
The default action of this command is to extract shapes from the
first band of the input dataset. The shapes are polygons bounding
contiguous regions (or features) of the same raster value. This
command performs poorly for int16 or float type datasets.
Bands other than the first can be specified using the `--bidx`
option:
$ rio shapes --bidx 3 tests/data/RGB.byte.tif
The valid data footprint of a dataset's i-th band can be extracted
by using the `--mask` and `--bidx` options:
$ rio shapes --mask --bidx 1 tests/data/RGB.byte.tif
Omitting the `--bidx` option results in a footprint extracted from
the conjunction of all band masks. This is generally smaller than
any individual band's footprint.
A dataset band may be analyzed as though it were a binary mask with
the `--as-mask` option:
$ rio shapes --as-mask --bidx 1 tests/data/RGB.byte.tif
"""
# These import numpy, which we don't want to do unless it's needed.
dump_kwds = {'sort_keys': True}
if indent:
dump_kwds['indent'] = indent
if compact:
dump_kwds['separators'] = (',', ':')
stdout = click.open_file(
output, 'w') if output else click.get_text_stream('stdout')
bidx = 1 if bandidx is None and band else bandidx
if not sequence:
geojson_type = 'collection'
geographic = True if projection == 'geographic' else False
with ctx.obj["env"] as env:
with rasterio.open(input) as src:
write_features(
stdout,
feature_gen(
src,
env,
bidx,
sampling=sampling,
band=band,
as_mask=as_mask,
with_nodata=with_nodata,
geographic=geographic,
precision=precision,
),
sequence=sequence,
geojson_type=geojson_type,
use_rs=use_rs,
**dump_kwds
)
def feature_gen(src, env, *args, **kwargs):
class Collection:
def __init__(self, env):
self.bboxes = []
self.env = env
@property
def bbox(self):
minxs, minys, maxxs, maxys = zip(*self.bboxes)
return min(minxs), min(minys), max(maxxs), max(maxys)
def __call__(self):
for f in dataset_features(src, *args, **kwargs):
self.bboxes.append(f['bbox'])
yield f
return Collection(env)